Magnetic microgels, a promising candidate for enhanced magnetic adsorbent particles in bioseparation: synthesis, physicochemical characterization, and separation performance.
نویسندگان
چکیده
For specific applications in the field of high gradient magnetic separation of biomaterials, magnetic nanoparticle clusters of controlled size and high magnetic moment in an external magnetic field are of particular interest. We report the synthesis and characterization of magnetic microgels designed for magnetic separation purposes, as well as the separation efficiency of the obtained microgel particles. High magnetization magnetic microgels with superparamagnetic behaviour were obtained in a two-step synthesis procedure by a miniemulsion technique using highly stable ferrofluid on a volatile nonpolar carrier. Spherical clusters of closely packed hydrophobic oleic acid-coated magnetite nanoparticles were coated with cross linked polymer shells of polyacrylic acid, poly-N-isopropylacrylamide, and poly-3-acrylamidopropyl trimethylammonium chloride. The morphology, size distribution, chemical surface composition, and magnetic properties of the magnetic microgels were determined using transmission electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. Magnetically induced phase condensation in aqueous suspensions of magnetic microgels was investigated by optical microscopy and static light scattering. The condensed phase consists of elongated oblong structures oriented in the direction of the external magnetic field and may grow up to several microns in thickness and tens or even hundreds of microns in length. The dependence of phase condensation magnetic supersaturation on the magnetic field intensity was determined. The experiments using high gradient magnetic separation show high values of separation efficiency (99.9-99.97%) for the magnetic microgels.
منابع مشابه
Synthesis and characterization of chitosan-magnetic iron nanoparticles
Absorption is a common technology used for water and wastewater treatment since it is often fast and efficient, while costly at the same time. Therefore, the development of low-cost and efficient adsorbents has led to the rapid growth of research interest in this regard. Chitosan is a natural polyaminosaccharide with effective adsorption properties, which is applied to remove various pollutants...
متن کاملA Biotechnological Perspective on The Affinity Magnetic Separation and Purification Based on Oligonucleotides
The rapidly growing field of biotechnology has created a critical need for simple, fast andhigh-throughput processes for the separation and purification of biomolecules from biologicalmatrices. In recent years, several bioseparation techniques have been proposed as advancedalternatives to the classical separation methods. These modern processes emphasize ultrahighselective and sensitive analysi...
متن کاملA Simple Thermal Decomposition Method for Synthesis of Co0.6Zn0.4Fe2O4 Magnetic Nanoparticles
Magnetic nanoparticles attracted a great deal of attention in the medical applications due to their unique properties. The most exceptional property of magnetic particles is their response to a magnetic force, and this property has been utilized in applications such as drug targeting, bioseparation, contrast agents in magnetic resonance imaging (MRI) and heating mediators for cancer therapy. In...
متن کاملSynthesis and Characterization of Novel Modified and Functionalized Silica Nano-particles for Protein Delivery Applications
In this study, the synthesis, characterization and controlled release behavior of new Hollow Silica Nano particles (HSNPs) and Magnetic Silica Nano Particles (MSNPs) were studied. Magnetic Silica Nano particles (MSNPs), as drug delivery vehicles, were synthesized through the coating of Fe3O4 nano-crystals with silica layers. The HSNPs were obtained by removal of Fe3O4 templates with hydrochlori...
متن کاملMagnetic Multi-Walled Carbon Nanotube as an Adsorbent for Toluidine Blue O Removal from Aqueous Solution
Toluidine Blue O (TBO) is a cationic dye which is extensively used in the industries. In the present paper a simple and efficient wet chemical method was introduced for removal of TBO from waste aqueous solution. Magnetic multi-walled carbon nanotubes were synthesized using commercially available multi-wall carbon nanotubes and magnetic iron oxide nanoparticles which were examined for removal o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 11 5 شماره
صفحات -
تاریخ انتشار 2015